1,644 research outputs found

    Charge neutrality level in significantly cation-anion mismatched semiconductors

    Get PDF
    The fundamental bulk and surface electronic properties of a novel class of semiconductors, characterised by a significant mismatch between the size and electro-negativity of the cation and anion (SCAMS), have been investigated. The characteristic examples of CdO, In2O3, and InN were studied using high-resolution x-ray photoemission spectroscopy, infrared reflectivity, optical absorption spectroscopy, and single-field Hall effect measurements. The behaviour of not only defects, dopants and impurities, which dominate the bulk electronic properties, but also surface states was shown to depend on the position of a single energy level, the charge neutrality level (CNL), unifying bulk and surface electronic properties of semiconductors. For the materials studied, the CNL was shown to be located within the conduction band (0.39 eV, »0:65 eV, and 1.19 eV above the conduction band minimum (CBM) in CdO, In2O3, and InN, respectively; see figure) in contrast to the vast majority of semiconductors where the CNL lies within the fundamental band gap (as, for example, in the classic case of GaAs). In CdO, this was shown to lead to native defects, hydrogen impurities and surface states all being donors, even in already n-type material. The donor surface states result in electron accumulation at the CdO surface. Such an electron accumulation is also present at InN surfaces, and this was shown to exhibit a remarkable independence on surface orientation, and to lead to inversion layers at the surface of p-type InN. The changes in surface space-charge regions were investigated across the In(Ga,Al)N composition range, for both undoped and Mg-doped alloys. The influence of the CNL position on interface properties and conductivity in InN was considered. Electron accumulation was observed in In2O3, in contrast to previous reports. Muonium, and by analogy hydrogen, was also shown to be a shallow donor in this material. The location of the CNL above the CBM in SCAMS was used to explain many of their striking bulk electronic properties, such as why materials like In2O3 are able to be conducting despite being optically transparent, two normally contradictory properties. The conclusions drawn from these studies are applicable to a wide variety of other materials, in particular other SCAMS such as ZnO or SnO2. Surface electron accumulation is treated here mainly within a one-electron semi-classical approximation. The final section of this work moves beyond this, using angle-resolved photoemission spectroscopy measurements and theoretical calculations to consider both the quantized nature of an electron accumulation layer, and the influence of many-body effects

    Benefits Cost Anaylsis: Options for Sea Level Rise Adaptation on West Cliff Drive

    Get PDF
    This report presents the results of a benefit cost analysis of various options for adapting West Cliff Drive (in the City of Santa Cruz, California) to sea level rise as identified through extensive technical analysis and community input. This report has built on previous work completed as part of the West Cliff Drive Adaptation and Management Plan project. The previous work products provided much of the information needed for this benefit cost analysis included an existing conditions inventory, future exposure and vulnerability assessment, and an adaptation alternatives analysis. Since most of the West Cliff Drive corridor is publicly owned by the City of Santa Cruz and California State Parks, results of the future exposure and vulnerability assessment showed that little private property and only small portions of public infrastructure is at risk in the future. Thus, the benefit cost analysis focuses primarily on changes to the recreational uses of the West Cliff Drive corridor. One challenge to adaptation planning is the uncertainty associated with the rate and elevation of sea level rise at future points of time, critical to the question of what to do and when. To deal with this uncertainty, the benefit cost analysis uses a technique called Monte Carlo analysis, a technique to test many different possible scenarios of sea level rise; in this analysis, 100,000 different scenarios were examined in every run of the analysis. The underlying sea level rise data is the same as used by the State of California in its various sea level rise planning guidance documents. This approach to the benefit cost analysis allows an estimate not only of net benefits but also the probability of positive net benefits of each adaptation strategy. The purpose of this benefit cost analysis is to compare the economic benefits and costs of the coastal adaptation options aimed at managing coastal erosion to a future in which no additional adaptation actions beyond those routinely taken by the City are taken. The benefit cost analysis is designed to support a choice between those different adaptation strategies which involve substantial new expenditures by the City the or “business as usual” strategy. The fundamental question is whether it is economically worthwhile for the City to invest substantial resources in adapting to sea level rise along West Cliff Drive compared with continuing as they have in the past? Economically worthwhile projects have benefits greater than costs, taking into account the differences in timing of spending and receipt of benefits. This concept is called the net present value. Four scenarios are examined: Business as Usual – No actions are taken beyond routine maintenance and irregular emergency repairs Managed Retreat – Existing armoring structures are removed, and natural erosion and shoreline processes restored. Recreation Focused Strategy – A combination of sand management, reduction in coastal armoring footprints and sand retention structures along with structural adaptation in high hazard areas such as sea caves. Protection Focused Strategy – Projects that stabilize the shoreline such as revetments, seawalls, filling of sea caves, and construction of artificial bedrock

    Charge neutrality level in significantly cation-anion mismatched semiconductors

    Get PDF
    The fundamental bulk and surface electronic properties of a novel class of semiconductors, characterised by a significant mismatch between the size and electro-negativity of the cation and anion (SCAMS), have been investigated. The characteristic examples of CdO, In2O3, and InN were studied using high-resolution x-ray photoemission spectroscopy, infrared reflectivity, optical absorption spectroscopy, and single-field Hall effect measurements. The behaviour of not only defects, dopants and impurities, which dominate the bulk electronic properties, but also surface states was shown to depend on the position of a single energy level, the charge neutrality level (CNL), unifying bulk and surface electronic properties of semiconductors. For the materials studied, the CNL was shown to be located within the conduction band (0.39 eV, »0:65 eV, and 1.19 eV above the conduction band minimum (CBM) in CdO, In2O3, and InN, respectively; see figure) in contrast to the vast majority of semiconductors where the CNL lies within the fundamental band gap (as, for example, in the classic case of GaAs). In CdO, this was shown to lead to native defects, hydrogen impurities and surface states all being donors, even in already n-type material. The donor surface states result in electron accumulation at the CdO surface. Such an electron accumulation is also present at InN surfaces, and this was shown to exhibit a remarkable independence on surface orientation, and to lead to inversion layers at the surface of p-type InN. The changes in surface space-charge regions were investigated across the In(Ga,Al)N composition range, for both undoped and Mg-doped alloys. The influence of the CNL position on interface properties and conductivity in InN was considered. Electron accumulation was observed in In2O3, in contrast to previous reports. Muonium, and by analogy hydrogen, was also shown to be a shallow donor in this material. The location of the CNL above the CBM in SCAMS was used to explain many of their striking bulk electronic properties, such as why materials like In2O3 are able to be conducting despite being optically transparent, two normally contradictory properties. The conclusions drawn from these studies are applicable to a wide variety of other materials, in particular other SCAMS such as ZnO or SnO2. Surface electron accumulation is treated here mainly within a one-electron semi-classical approximation. The final section of this work moves beyond this, using angle-resolved photoemission spectroscopy measurements and theoretical calculations to consider both the quantized nature of an electron accumulation layer, and the influence of many-body effects.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Inequalities in the dental health needs and access to dental services among looked after children in Scotland: a population data linkage study

    Get PDF
    Background: There is limited evidence on the health needs and service access among children and young people who are looked after by the state. The aim of this study was to compare dental treatment needs and access to dental services (as an exemplar of wider health and well-being concerns) among children and young people who are looked after with the general child population. Methods: Population data linkage study utilising national datasets of social work referrals for ‘looked after’ placements, the Scottish census of children in local authority schools, and national health service’s dental health and service datasets. Results: 633 204 children in publicly funded schools in Scotland during the academic year 2011/2012, of whom 10 927 (1.7%) were known to be looked after during that or a previous year (from 2007–2008). The children in the looked after children (LAC) group were more likely to have urgent dental treatment need at 5 years of age: 23%vs10% (n=209/16533), adjusted (for age, sex and area socioeconomic deprivation) OR 2.65 (95% CI 2.30 to 3.05); were less likely to attend a dentist regularly: 51%vs63% (n=5519/388934), 0.55 (0.53 to 0.58) and more likely to have teeth extracted under general anaesthesia: 9%vs5% (n=967/30253), 1.91 (1.78 to 2.04). Conclusions: LAC are more likely to have dental treatment needs and less likely to access dental services even when accounting for sociodemographic factors. Greater efforts are required to integrate child social and healthcare for LAC and to develop preventive care pathways on entering and throughout their time in the care system

    Design of the iLocater Acquisition Camera Demonstration System

    Full text link
    Existing planet-finding spectrometers are limited by systematic errors that result from their seeing-limited design. Of particular concern is the use of multi-mode fibers (MMFs), which introduce modal noise and accept significant amounts of background radiation from the sky. We present the design of a single-mode fiber-based acquisition camera for a diffraction-limited spectrometer named "iLocater." By using the "extreme" adaptive optics (AO) system of the Large Binocular Telescope (LBT), iLocater will overcome the limitations that prevent Doppler instruments from reaching their full potential, allowing precise radial velocity (RV) measurements of terrestrial planets around nearby bright stars. The instrument presented in this paper, which we refer to as the acquisition camera "demonstration system," will measure on-sky single-mode fiber (SMF) coupling efficiency using one of the 8.4m primaries of the LBT in fall 2015

    Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy

    Get PDF
    The valence band offset of wurtzite-InN/AlN (0001) heterojunctions is determined by x-ray photoelectron spectroscopy to be 1.52±0.17 eV. Together with the resulting conduction band offset of 4.0±0.2 eV, a type-I heterojunction forms between InN and AlN in the straddling arrangement

    Surface electronic properties of undoped InAlN alloys

    Get PDF
    The variation in surface electronic properties of undoped c-plane InxAl1−xN alloys has been investigated across the composition range using a combination of high-resolution x-ray photoemission spectroscopy and single-field Hall effect measurements. For the In-rich alloys, electron accumulation layers, accompanied by a downward band bending, are present at the surface, with a decrease to approximately flatband conditions with increasing Al composition. However, for the Al-rich alloys, the undoped samples were found to be insulating with approximate midgap pinning of the surface Fermi level observed

    On the origin of the anomalous peak in the resistivity of TiSe2

    Get PDF
    We gratefully acknowledge support from The Leverhulme Trust (Grant No. RL-2016-006) and The Royal Society.Resistivity measurements of TiSe2 typically show only a weak change in gradient at the charge density wavetransition at TCDW ≈ 200 K, but more prominently feature a broad peak at a lower Tpeak ∌165 K, which has remained poorly understood despite decades of research on the material. Here we present quantitative simulations of the resistivity using a simplified parametrization of the normal state band structure, based on recent photoemission data. Our simulations reproduce the overall profile of the resistivity of TiSe2, including its prominent peak, without implementing the CDW at all. We find that the peak in resistivity corresponds to a crossover between a low temperature regime with electron-like carriers only, to a regime around room temperature where thermally activated and highly mobile hole-like carriers dominate the conductivity. Even when implementing substantial modifications to model the CDW below the transition temperature, we find that these thermal population effects still dominate the transport properties of TiSe2.PostprintPeer reviewe

    Clinical effectiveness of cell therapies in patients with chronic liver disease and acute-on-chronic liver failure: a systematic review protocol

    Get PDF
    PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol*. (DOC 82 kb
    • 

    corecore